Patterned growth of silicon oxide nanowires from iron ion implanted SiO2 substrates.

نویسندگان

  • Yongho Choi
  • Jason L Johnson
  • Ant Ural
چکیده

We demonstrate experimentally a simple and efficient approach for silicon oxide nanowire growth, by implanting Fe(+) ions into thermally grown SiO(2) layers on Si wafers and subsequently annealing in argon and hydrogen to nucleate the nanowires. We study the effect of implantation dose and energy, growth temperature, H(2) gas flow, and growth time on the silicon oxide nanowire growth. We find that sufficiently high implant dose, high growth temperature, and the presence of H(2) gas flow are crucial parameters for silicon oxide nanowire growth. We also demonstrate the patterned growth of silicon oxide nanowires in localized areas by lithographic patterning and etching of the implanted SiO(2) substrates before growth. We propose a simple physical model to explain the growth results. This works opens up the possibility of growing silicon oxide nanowires directly from solid substrates, controlling the location of nanowires at the submicron scale, and integrating them into nonplanar three-dimensional nanoscale device structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-Area Direct Hetero-Epitaxial Growth of 1550-nm InGaAsP Multi-Quantum-Well Structures on Patterned Exact-Oriented (001) Silicon Substrates by Metal Organic Chemical Vapor Deposition

We employ a simple two-step growth technique to grow large-area 1550-nm laser structures by direct hetero-epitaxy of III–V compounds on patterned exact-oriented (001) silicon (Si) substrates by metal organic chemical vapor deposition. Densely-packed, highly uniform, flat and millimeter-long indium phosphide (InP) nanowires were grown from Si v-grooves separated by silicon dioxide (SiO2) stripes...

متن کامل

pH driven addressing of silicon nanowires onto Si3N4/SiO2 micro-patterned surfaces.

pH was used as the main driving parameter for specifically immobilizing silicon nanowires onto Si3N4 microsquares at the surface of a SiO2 substrate. Different pH values of the coating aqueous solution enabled to experimentally distribute nanowires between silicon nitride and silicon dioxide: at pH 3 nanowires were mainly anchored on Si3N4; they were evenly distributed between SiO2 and Si3N4 at...

متن کامل

Low-Temperature Selective Growth of Tungsten Oxide Nanowires by Controlled Nanoscale Stress Induction

We report a unique approach for the patterned growth of single-crystalline tungsten oxide (WOx) nanowires based on localized stress-induction. Ions implanted into the desired growth area of WOx thin films lead to a local increase in the compressive stress, leading to the growth of nanowire at lower temperatures (600 °C vs. 750-900 °C) than for equivalent non-implanted samples. Nanowires were su...

متن کامل

Effect of Nano-Textured Silicon Substrate ‎on the Synthesize of Metal Oxides ‎Nanostructures

Metal oxides such as ZnO, SnO2 and W2O3 with super properties are widely used in the different fields of science and proper synthesis of these materials is of the great importance. In this work, some metal oxides with nano structures including SnO2 nanopyramids, V2O5 nanowires and hierarchical structure of SnO2 nan...

متن کامل

Nickel silicide nanowires formed in pre-patterned SiO2 trenches and their electrical transport properties

Nickel silicide (NiSi) nanowires with different linewidth (from 1000 to 32 nm) are formed in pre-patterned SiO2 trenches on a silicon substrate. SiO2 trenches are milled by focused ion beam (FIB) etching, and an electrical endpoint detection technique is used to control the FIB milling depth to just reveal the silicon surface. The formation is based on Ni thin film deposition and the subsequent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 20 13  شماره 

صفحات  -

تاریخ انتشار 2009